AN AVERAGING RESULT FOR l^1 -SEQUENCES AND APPLICATIONS TO WEAKLY CONDITIONALLY COMPACT SETS IN L_x^1

BY

J. BOURGAIN'

ABSTRACT

We establish a theorem on l'-sequences obtained by averaging of semi-norms. The result is applied in the study of weakly conditionally compact subsets of L_{x}^{1} , where X is a Banach space.

1. An averaging result

We will denote by $(r_n)_n$ the sequence of Rademacher functions on [0, 1]. In the first 2 propositions, $X, \| \|$ will be a semi-normed space.

PROPOSITION 1. If x_1, \dots, x_n is a finite set of elements of X and a_1, \dots, a_n reals, then

$$\int \left\| \sum_{k} a_{k} r_{k}(\omega) x_{k} \right\| d\omega \leq \max\left(|a_{k}|; k \right) \cdot \int \left\| \sum_{k} r_{k}(\omega) x_{k} \right\| d\omega$$

This result is well known (see [14]) and easily seen. We omit the proof.

PROPOSITION 2. Let $(x_n)_n$ be a bounded sequence in X and $\delta > 0$ such that $\int \|\sum_k a_k r_k(\omega) x_k\| d\omega \ge \delta$ for all finite sets a_1, \dots, a_n of positive reals with $\sum_k a_k = 1$. Then $(x_n)_n$ has an l^1 -subsequence.

PROOF. Assume $(x_n)_n$ bounded by M > 0 and without l^1 -sequence. Then, by Rosenthal's result [12], $(x_n)_n$ has a weak Cauchy subsequence. For convenience, we suppose $(x_n)_n$ itself w* convergent. Denote by K the dual ball of X, which is of course compact in the w*-topology. We introduce the bounded sequence $(\varphi_p)_p$

[†] Aspirant N.F.W.O. Belgium Received May 12, 1978

in C(K), taking $\varphi_p(x^*) = \sum_{n=p+1}^{p+d-1} |\langle x_n - x_{p+d}, x^* \rangle|$ for $x^* \in K$, where $d > \delta^{-2}M^2$ is a fixed integer. Clearly $\lim_{p \to \infty} \varphi_p = 0$ pointwise and hence weakly. Consider the subsequence $(\psi_q)_q$ of $(\varphi_p)_p$ with $\psi_q = \varphi_{q,d}$. Since the closure of the convex hull $c(\psi_q; q)$ contains the 0-function, there exists a convex combination $\Sigma_q \lambda_q \psi_q$ uniformly bounded by δ . Hence

$$\left\| \sum_{q} \sum_{n=qd+1}^{(q+1)d-1} \lambda_q(x_n - x_{(q+1)d}) r_n(\omega) \right\| \leq \delta \quad \text{for each } \omega \in [0,1].$$

By integration, we get

$$\delta(d-1) \leqq \int \left\| \sum_{q} \sum_{n=qd+1}^{(q+1)d-1} \lambda_{q} r_{n}(\omega) x_{n} \right\| d\omega$$

$$\leqq \delta + \int \left\| \sum_{q} \lambda_{q} \left(\sum_{n=qd+1}^{(q+1)d-1} r_{n}(\omega) \right) x_{(q+1)d} \right\| d\omega$$

$$\leqq \delta + M \sqrt{d-1},$$

which is a contradiction.

Consider the space E of all finite real sequences and denote by e_i the *i*-unit vector. For $x \in E$, let $||x||_1 = \sum_i |x_i|$.

Assume a compact Radon probability space (M, μ) given and for each $t \in M$ a semi-norm $| \cdot |_t$ on E.

PROPOSITION 3. Let $n \in \mathbb{N}$ be fixed and assume $|x|_i$ continuous functions of t for each $x \in [e_1, \dots, e_n]$. Then for all $\varepsilon > 0$ there exists a finite set $(\varphi_i)_{i \in I}$ of continuous functions on M, satisfying

- (1) The φ_i are positive and bounded by 1,
- (2) The supports supp φ_i are mutually disjoint.
- (3) $\mu(\bigcup_{j\in I}[\varphi_j=1])>1-\varepsilon$.
- (4) For all $x \in [e_1, \dots, e_n]$, we have $||x||_s |x||_t | \le \varepsilon ||x||_1$ provided s, t are in the support of a same φ_i .

PROOF. We show that each point $s \in M$ has a neighborhood V so that $||x|_s - |x|_t | \le \varepsilon ||x||_1$ for $t \in V$ and $x \in [e_1, \dots, e_n]$. At this point, the proof of the proposition is straightforward and the details are left for the reader.

Clearly the functions $|e_i|_t$ of t $(1 \le i \le n)$ are bounded by some b > 0. Consider a finite $\varepsilon/3b$ -net $\mathscr E$ in the unit-ball of $[e_1, \cdots, e_n]$ for the $\|\cdot\|_t$ -norm. It is possible to take V such that $|\cdot|_{S} |\cdot|_{S} |\cdot|_{S}$

$$||x|_{s} - |x|_{\iota}| \leq |x - y|_{s} + |x - y|_{\iota} + ||y|_{s} - |y|_{\iota}|$$

$$\leq \sum_{i} |x_{i} - y_{i}| |e_{i}|_{s} + \sum_{i} |x_{i} - y_{i}| |e_{i}|_{\iota} + \frac{\varepsilon}{3}$$

$$\leq 2b ||x - y||_{\iota} + \frac{\varepsilon}{3}$$

$$\leq \varepsilon.$$

Thus the required property is satisfied.

THEOREM 4. Assume $\sup_{i,t} |e_i|_t < \infty$ and $|x|_t$ a measurable function of t for all $x \in E$. Clearly $|x| = \int |x|_t$, $\mu(dt)$ defines a semi-norm on E.

Suppose that $(e_i)_i$ is an l^1 -sequence for $|\cdot|$. Then there exist $t \in M$ and a subsequence of $(e_i)_i$ which is an l^1 -sequence for $|\cdot|_i$.

We will first prove the theorem assuming the |x|, continuous functions of t. For convenience, suppose $|e_i|$, bounded by 1. Proposition 3 yields us for each $i \in \mathbb{N}$ a finite set $(\varphi_{ij})_{i \in I_i}$ of continuous functions on M, satisfying

(1) The φ_{ii} are positive and bounded by 1.

For each $i \in N$

- (2) The supports supp φ_{ij} are mutually disjoint.
- (3) $\mu(M_i) > 1 2^{-i}$ where $M_i = \bigcup_{j \in I_i} [\varphi_{ij} = 1]$.
- (4) $||x|_s |x|_t| \le 2^{-t} ||x||_1$ if $x \in [e_1, \dots, e_t]$ and s, t are in the support of a same φ_{ij} .

Let us now introduce the real vector space \mathscr{X} spanned by the unit vectors $(e_{ij})_{i\in\mathbb{N},j\in I_l}$. If we take

$$\left|\left|\left|\sum_{i}'\sum_{j\in I_{i}}a_{ij}l_{ij}\right|\right|\right|=\sup_{i}\left|\left|\sum_{i}'\sum_{j\in I_{i}}a_{ij}\varphi_{ij}(t)r_{i}(\omega)e_{i}\right|_{i}d\omega,$$

then ||| ||| is a semi-norm on \mathscr{X} . Remark that $|||e_{ij}||| \le 1$. Defining $F_i(t) = \sum_{j \in I_i} \varphi_{ij}(t) e_{ij}$, we obtain a bounded by 1 sequence $(F_i)_i$ of continuous \mathscr{X} -valued functions on M.

LEMMA 5. Let $i_0 \in \mathbb{N}$, $(a_i)_i$ a sequence of reals which are 0 except for finitely many $i \ge i_0$ and $s \in M$. Then

$$\left(\inf_{i \geq i_0} \sum_{j \in I_i} \varphi_{ij}(s)^2\right) \cdot \int \left| \sum_i a_i r_i(\omega) e_i \right|_s d\omega \leq \left| \left| \sum_i a_i F_i(s) \right| \right|$$

$$\leq \int \left| \sum_i a_i r_i(\omega) e_i \right|_s d\omega + 2^{-i_0} \sum_i |a_i|.$$

PROOF. If we take $\psi_i(s, t) = \sum_{i \in I_i} \varphi_{ii}(s) \varphi_{ij}(t)$, then we find that

$$\left|\left|\left|\sum_{i} a_{i}F_{i}(s)\right|\right|\right| = \sup_{i} \int_{a} \left|\left|\sum_{i} \psi_{i}(s, t)a_{i}r_{i}(\omega)e_{i}\right|\right|_{t} d\omega,$$

by definition of || |||. The first inequality is obtained by taking t = s, using Proposition 1. To obtain the second inequality, let us fix $t \in M$. If $i_1 = \max\{i \ge i_0; \ \psi_i(s,t) \ne 0\}$, then $s,t \in \text{supp } \varphi_{i,j}$ for some $j \in I_{i_1}$. Therefore, by construction of the φ_{ij} , it follows that

$$\left| \sum_{i} \psi_{i}(s,t) a_{i} r_{i}(\omega) e_{i} \right|_{t} \leq \left| \sum_{i=i_{0}}^{i_{1}} \psi_{i}(s,t) a_{i} r_{i}(\omega) e_{i} \right|_{s}$$

$$+ 2^{-i_{1}} \sum_{i=i_{0}}^{i_{1}} \psi_{i}(s,t) |a_{i}| \quad \text{for each } \omega \in [0,1].$$

Since $\psi_i(s, t) \le 1$, integration yields us

$$\int \left| \sum_{i} \psi_{i}(s,t) a_{i} r_{i}(\omega) e_{i} \right|_{t} d\omega \leq \int \left| \sum_{i} a_{i} r_{i}(\omega) e_{i} \right|_{s} d\omega + 2^{-i_{0}} \sum_{i} |a_{i}|$$

again by Proposition 1. This completes the proof.

LEMMA 6. There is some $t \in M$ such that $(F_i(t))_i$ is not a weakly 0 sequence in \mathscr{X} .

PROOF. Assume $\lim_i F_i(t) = 0$ weakly in \mathscr{X} for each $t \in M$. Denote by K the dual ball of \mathscr{X} equipped with the w*-topology. For each $i \in \mathbb{N}$, consider the function G_i on the compact space $M \times K$, given by $G_i(t, x^*) = \langle F_i(t), x^* \rangle$. It is easily seen that G_i is continuous and bounded by 1. Since $(G_i)_i$ is pointwise converging to 0, $\lim_i G_i = 0$ weakly in $C(M \times K)$.

Choose $\iota > 0$ arbitrarily small and $i_0 \in \mathbb{N}$ with $2^{-i_0+2} < \iota$. There is a convex combination $\sum_{i \ge i_0} \lambda_i G_i$ which is uniformly bounded by $\iota/2$. Hence $\||\sum_{i \ge i_0} \lambda_i F_i(t)\|| \le \iota/2$ for all $t \in M$. Take $N = \bigcap_{i \ge i_0} M_i$ and remark that $\mu(N) \ge 1 - \sum_{i \ge i_0} 2^{-i} > 1 - \iota/2$. We now use Lemma 5 and obtain

$$\int \left| \sum_{i} \lambda_{i} r_{i}(\omega) e_{i} \right|_{t} d\omega \leq \frac{\iota}{2} \quad \text{if } t \in \mathbb{N}.$$

Hence, by the Fubini theorem,

$$\int \left| \sum_{i} \lambda_{i} r_{i}(\omega) e_{i} \right| d\omega = \int \left(\int \left| \sum_{i} \lambda_{i} r_{i}(\omega) e_{i} \right|_{i} d\omega \right) dt \leq \frac{\iota}{2} + \mu \left(M \backslash N \right) \leq \iota.$$

Taking $\iota > 0$ sufficiently small, we get a contradiction on the hypothesis that $(e_i)_i$ is an l¹-sequence for $|\cdot|$.

Proof of the theorem in the continuous case

By Lemma 6, there is some $t \in M$ such that $(F_i(t))_i$ does not converge weakly to 0 in \mathscr{X} . Hence there exist $\delta > 0$ and a subsequence $(F_{i_k}(t))_k$ so that $\dim_{\mathbb{H}} \|(c(F_{i_k}(t), k), 0) \ge \delta$.

Take k_0 with $2^{-k_0+1} < \delta$.

If $(a_k)_k$ is a sequence of positive reals which are 0 except for finitely many $k \ge k_0$ and $\Sigma_k a_k = 1$, then we deduce from Lemma 5

$$\delta \leq \left| \left| \sum_{k} a_{k} F_{i_{k}}(t) \right| \right| \leq \int \left| \sum_{k} a_{k} r_{i_{k}}(\omega) e_{i_{k}} \right|_{t} d\omega + 2^{-k_{0}}$$

and thus $\int |\Sigma_k a_k r_{i_k}(\omega) e_{i_k}|_{\iota} d\omega \ge \delta/2$. It follows from Proposition 2 that $(e_{i_k})_{k \ge k_0}$ has an l^1 -subsequence for $|\cdot|_{\iota}$.

Proof of the theorem in the general case

Suppose $\delta > 0$ such that $|x| \ge \delta ||x||_1$ for $x \in E$. Consider a sequence $\mathscr E$ in E which is dense for $||\cdot||_1$. By Lusin's theorem, there exists a compact subset M' of M so that $\mu(M') > 1 - \delta/2$ and the mappings $|y|_t$ on M' are continuous for each $y \in \mathscr E$. It is routine to verify that also $|x|_t$ is continuous on M' for each $x \in E$. Define the semi-norm $|\cdot|'$ on E by $|x|' = \int_{M'} |x|_t \mu(dt)$. Since for $x \in E$, we have

$$|x|' \ge |x| - \int_{M \setminus M'} |x|_{t} \mu(dt) \ge \delta ||x||_{1} - \mu(M \setminus M') ||x||_{1} \ge \frac{1}{2} \delta ||x||_{1},$$

we reduced the problem to the continuous case.

2. Weakly conditionally compact subsets of $L_x^{\frac{1}{2}}$

We say that a subset A of a Banach space Y is weakly conditionally compact provided every sequence in A has a weak Cauchy subsequence.

We can then reformulate Rosenthal's result [12] by saying that if A is bounded then either A is weakly conditionally compact or A contains an l^1 -sequence.

In this section, (M, μ) will be a fixed compact Radon probability space and X a fixed Banach space. If $1 \le p < \infty$, then $L_X^P = L_X^P(M, \mu)$ will denote the space of p-integrable X-valued function classes on (M, μ) (cf. [6]).

A set A of L_X^1 is said to be equi-integrable provided $\{||f||; f \in A\}$ is equi-integrable. The following property is well known [5].

Proposition 7. Every weakly conditionally compact subset of L_x^1 is equiintegrable.

The next result was shown by B. Maurey and G. Pisier (see [11]) and also independently by the author. It will be obtained here as a corollary of the stronger result established in the preceding section.

THEOREM 8. Let $(f_n)_n$ be an equi-integrable sequence in L_x^1 and assume $(f_n(t))_n$ without l^1 -sequence for almost all $t \in M$. Then $\{f_n; n\}$ is weakly conditionally compact in L_x^1 .

Proof. Assume $(f_n)_n$ a uniformly bounded sequence of X-valued μ -measurable functions on M and $\delta > 0$, such that

$$\int \left\| \sum_{n}' a_{n} f_{n}(t) \right\| \mu\left(dt\right) \geq \delta \sum_{n}' |a_{n}|$$

for every finitely supported sequence $(a_n)_n$ of scalars. The only thing to prove is that then $(f_n(t))_n$ has an l^1 -sequence for some $t \in M$.

Let E be as in the first section and introduce the semi-norm $|\cdot|_t$ on E by $|x|_t = ||\sum_n x_n f_n(t)||$ for $x \in E$. The conditions of Theorem 4 are satisfied and we get the required conclusion.

Combining Proposition 7 and Theorem 8, we get

COROLLARY 9. Let X be a Banach space which does not contain l^1 (isomorphically). Then a subset A of L^1_X is weakly conditionally compact if and only if it is equi-integrable.

We have the following stability result:

PROPOSITION 10. Let A be a weakly conditionally compact subset of L_X^1 and B a bounded subset of L_X^∞ . Then the set A. $B = \{f, \varphi; f \in A, \varphi \in B\}$ is also weakly conditionally compact in L_X^1 .

PROOF. We may assume B the unit ball of $L_{\mathbb{R}}^{\infty}$. Suppose the statement untrue, then there would be a sequence $(f_n)_n$ in A and a sequence $(\varphi_n)_n$ in B such that $(f_n, \varphi_n)_n$ is an l-basis, i.e., for some $\delta > 0$

$$\left\| \sum_{n}' a_{n} f_{n} \cdot \varphi_{n} \right\|_{1} \geq \delta \sum_{n}' |a_{n}|$$

for all finitely supported sequences $(a_n)_n$ of scalars. Hence, by Proposition 1, also

$$\int \left\| \sum_{n}' a_{n} r_{n}(\omega) f_{n} \right\|_{1} d\omega \ge \int \int \left\| \sum_{n}' a_{n} r_{n}(\omega) f_{n}(t) \varphi_{n}(t) \right\| d\omega \mu (dt)$$

$$\ge \delta \sum_{n}' |a_{n}|.$$

We apply Proposition 2 to obtain an l^1 -subsequence of $(f_n)_n$. But this contradicts the hypothesis on A.

We now present another proof of a result of G. Pisier [11].

THEOREM 11. If $1 , then <math>l^1$ imbeds in L_X^p if and only if l^1 imbeds in X.

PROOF. Fix $1 and remark that <math>L_R^p$ is a uniformly convex Banach space. Let $0 < \varepsilon < \frac{1}{4}$ be choosen and take $0 < \delta < \frac{1}{4}$ such that if $\|\varphi\|_p = \|\psi\|_p = 1$ and $\|\varphi - \psi\|_p > \varepsilon$ then $\|\varphi + \psi\|_p < 2(1 - \delta)$ for all φ, ψ in L_R^p . If l^1 imbeds in L_X^p , then there is a sequence $(f_n)_n$ in the unit sphere of L_X^p , satisfying

$$\left\| \sum_{n}' a_{n} f_{n} \right\|_{p} \geq (1 - \delta) \sum_{n}' |a_{n}|$$

for all finitely supported sequences $(a_n)_n$ of reals (using the James regularization property [7]).

For each f_n , there is some g_n in L_X^{∞} and φ_n in L_R^p so that $\|g_n\|_{\infty} = 1$, $\varphi_n = \|f_n\|$ and $f_n = g_n$. If $m \neq n$, we get $\|\varphi_m + \varphi_n\|_p \ge \|f_m + f_n\|_p \ge 2(1 - \delta)$ and therefore $\|\varphi_m - \varphi_n\|_p \le \varepsilon$. Consider a function φ in L_R^{∞} with $\|\varphi - \varphi_1\|_p < \varepsilon$ and remark that $\|f_n - g_n \cdot \varphi\|_p \le \|\varphi_n - \varphi_1\|_p + \|\varphi_1 - \varphi\|_p < 2\varepsilon$. Hence, we see that

$$\|\varphi\|_{\infty} \left\| \sum_{n}^{\prime} a_{n} g_{n} \right\|_{1}^{1/p} \ge \left\| \sum_{n}^{\prime} a_{n} g_{n} \cdot \varphi \right\|_{p} \ge 1 - \delta - 2\varepsilon > \frac{1}{4}$$

if $(a_n)_n$ is a sequence of reals with $\Sigma_n |a_n| = 1$. Therefore $(g_n)_n$ is an l^1 -sequence in L_X^1 and l^1 imbeds in X by Corollary 9.

It is a natural problem to characterize weakly conditionally compact subsets of L_X^1 . We already solved the problem if X has no l^1 -subspace (Corollary 9).

PROPOSITION 12. For a subset A of L_x^1 , the following properties are equivalent:

- (1) For every $\varepsilon > 0$ there exists a weakly conditionally compact subset W of X such that for each function $f \in A$ there is a measurable subset M_t of M satisfying
 - (i) $\int_{M_f} ||f(t)|| \mu(dt) < \varepsilon$,
 - (ii) $f(M \setminus M_f) \subset W$.
 - (2) The same as (1) but with W replaced by $W + B(0, \varepsilon)$ in (ii).

PROOF. Suppose that A satisfied (2) and fix $\varepsilon > 0$. Consider for each n a subset W_n of X associated with the positive number $\varepsilon_n = \varepsilon \cdot 2^{-n}$. It is easily checked that $W = \bigcap_n (W_n + B(0, \varepsilon_n))$ is still weakly conditionally compact. For fixed f in A let for each n the set M_f^n be such that $\int_{M_f^n} ||f(t)|| \mu(dt) < \varepsilon_n$ and $f(M \setminus M_f^n) \subset W_n + B(0, \varepsilon_n)$. Take $M_f = \bigcup_n M_f^n$, for which (i) and (ii) of (1) are clearly true.

We agree to say that a set A in L_X^1 has property (U) provided it fulfils condition (1) of Proposition 12.

PROPOSITION 13. If the subset A of L_X^1 verifies (U), then

- (1) A is weakly conditionally compact.
- (2) Given for each $f \in A$ an automorphism θ_f of the measure space (K, μ) , then also the set $\{f \circ \theta_f; f \in A\}$ has property (U).

PROOF. (1) If A is not weakly conditionally compact, there is a sequence $(f_n)_n$ of functions in A and $\varepsilon > 0$ such that if $(g_n)_n$ is a sequence in L_X^1 with $||f_n - g_n||_1 < \varepsilon$ then also $(g_n)_n$ is not weakly conditionally compact. Take W and for all $f \in A$ a subset M_f of M satisfying (1) of Proposition 12. Then the sequence $(g_n)_n$ in L_X^1 with $g_n = f_n \cdot \chi_{M \setminus M_n}$ $(M_n = M_{f_n})$ is not weakly conditionally compact. Since A is certainly equi-integrable, $(g_n)_n$ is equi-integrable. We apply Theorem 8 and get some $t \in M$ for which $(g_n(t))_n$ has an l^1 -subsequence. But $\{g_n(t); n\} \subset \{0\} \cup W$, contradicting the hypothesis on W.

(2) Follows readily from the definition of property (U).

THEOREM 14. For subsets A of L_x^1 , property (U) is equivalent to weakly conditionally compactness in the following cases:

- (1) X is a Banach space without l^1 -subspace.
- (2) X is an $L^1(N, \nu)$ -space, where (N, ν) is a positive σ -finite measure space.

Proof. (1) Is equivalent to Corollary 9.

(2) If $X = L^1(N, \nu)$, the space L^1_X can be identified with the space $L^1(M \times N) = L^1(M \times N, \mu \otimes \nu)$, by the Fubini theorem. For $f \in L^1_X$, \hat{f} will denote some member of the corresponding function class in $L^1(M \times N)$. The function \hat{f} will moreover be assumed measurable for the product σ -algebra.

If A is a weakly conditionally compact subset of L_X^1 , then A is relatively weakly compact viewed as a set in $L^1(M \times N)$, which is weakly sequentially complete.

Fix now $\varepsilon > 0$. Let $0 < \delta < \varepsilon/2$ be such that $\int_{M'} ||f(t)||_1 \mu(dt) < \varepsilon$ for all $f \in A$ whenever $\mu(M') < \delta$. By a well known result (cf. [6], III), there exist some measurable subset N' of N and some a > 0 satisfying $\nu(N \setminus N') < \infty$ and for each $f \in A$

$$\int_{P_f} |\hat{f}(t, u)| \, \mu(dt) \otimes \nu(du) < \frac{\delta^2}{2}, \quad \text{where}$$

$$P_f = \{(t, u) \in M \times N; \, |\hat{f}(t, u)| > a\},$$

$$\int_{M \times N'} |\hat{f}(t, u)| \, \mu(dt) \otimes v(du) < \frac{\delta^2}{2}.$$

The subset $W = \{ \varphi \in L^1(N, \nu); \| \varphi \|_{\infty} \le a \text{ and } \varphi = 0 \text{ on } N' \}$ of $L^1(N, \nu)$ is relatively weakly compact. Fix now some $f \in A$. Take

$$M_f' = \Big\{ t \in M; \int_{P_f(t)} |\hat{f}(t,u)| \, \nu(du) > \delta \Big\},\,$$

$$M''_{f} = \left\{ t \in M; \int_{N'} |\hat{f}(t, u)| \nu(du) > \delta \right\}$$

and

$$M_f = M'_f \cup M''_f$$
.

The reader will verify that $\mu(M'_f) < \delta/2$, $\mu(M''_f) < \delta/2$ and hence $\mu(M_f) < \delta$. Therefore $\int_{M_f} ||f(t)||_1 \mu(dt) < \varepsilon$.

For $t \in M \setminus M_f$, consider the function g on N, which is 0 on $P_f(t) \cup N'$ and \hat{f}_t elsewhere. Then the g-function class belongs to W. Furthermore

$$\int |\hat{f}_t(u) - g(u)|\nu(du) \leq \int_{P_t(t)} |\hat{f}(t,u)| \nu(du) + \int_{N'} |\hat{f}(t,u)| \nu(du) \leq 2\delta < \varepsilon.$$

By Proposition 12, A satisfies (U).

In general, it is untrue that weakly conditionally compactness implies (U). We will illustrate this with an example. Let K be the Cantor set $\{0,1\}^N$ and μ the Haar measure. For each n, consider the measure automorphism θ_n of K obtained by permutation of the n-coordinate. (θ_n^2 is the identity). Take $\mathscr{C} = \bigcup_n \{0,1\}^n$, consisting of the finite complexes. For $\varepsilon, \varepsilon' \in \mathscr{C}$, we write $\varepsilon < \varepsilon'$, provided ε' starts with ε . This yields us a partial order on \mathscr{C} . We say that $\varepsilon, \varepsilon' \in \mathscr{C}$ are comparable if either $\varepsilon < \varepsilon'$ or $\varepsilon' < \varepsilon$ and otherwise they are called incomparable. If $\nu \in K$, then $\nu \mid n \in \mathscr{C}$ will consist of the first n elements of ν . Remark that the members of the set $\{\theta_n(\nu) \mid n; n\}$ are mutually incomparable for all $\nu \in K$. K will be the Banach space obtained by completion of the linear space spanned by unit vectors $(e_{\varepsilon})_{\varepsilon \in \mathscr{C}}$ under the norm

$$\|x\| = \sup_{\varepsilon_1, \dots, \varepsilon_n} \sum_{k=1}^n \left(\sum_{\varepsilon_k < \varepsilon'} |x_{\varepsilon'}|^2 \right)^{\frac{1}{2}}$$

where the supremum is taken over all finite sets $\varepsilon_1, \dots, \varepsilon_n$ of mutually incomparable members of \mathscr{C} .

It is clear that if $\nu \in K$, then $(e_{\nu|n})_n$ is isometrically equivalent with the l^2 -basis. It follows from the preceding remark that $(e_{\theta_n(\nu)|n})_n$ is isometrically equivalent with the l^1 -basis. We introduce the sequence $(f_n)_n$ in L^1_X , by taking $f_n(\nu) = e_{\nu|n}$ for each $\nu \in K$. The following facts are straightforward:

- (1) $(f_n)_n$ is an l^2 -basis in L_X^1 .
- (2) $(f_n \circ \theta_n)_n$ is an l^1 -basis in L_x^1 .
- By (1), the set $\{f_n; n\}$ is relatively weakly compact and hence certainly weakly conditionally compact in L_x^1 . But $\{f_n; n\}$ fails property (U), by (2) and Proposition 13.

We end with the following two interesting problems, which seem to be unsolved so far:

- (1) Is it true that L_X^1 is weakly sequentially complete if X is weakly sequentially complete?
 - (2) The same question for the Dunford-Pettis property.

REFERENCES

- 1. J. Bourgain, On convergent sequences of continuous functions, to appear.
- 2. J. Bourgain, An averaging result for co-sequences, to appear in Bull. Soc. Math. Belg.
- 3. J. Bourgain and F. Delbean, Quotient maps onto C(K) spaces, to appear in Bull. Soc. Math. Belg.
- 4. J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, to appear in Amer. J. Math.
- 5. J. Diestel and J. J. Uhl, *The Theory of Vector Measures*, Amer. Math. Soc. Surveys, No. 15, 1977.
 - 6. N. Dunford and J. Schwartz, Linear Operators, Vol 1, Interscience, New York, 1958.
 - 7. R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- 8. R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
- 9. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer Verlag, Berlin-Heidelberg-New York, 1977, p. 92.
- 10. E. Odell and H. Rosenthal, A double-dual characterization of separable Banach spaces containing 11, Israel J. Math. 20 (1975), 375-384.
- 11. G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l¹, C. R. Acad. Sci. Paris A 286, 747-749.
- 12. H. Rosenthal, A characterization of Banach spaces containing l^1 , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.
- 13. H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362-378
- 14. Seminaire Maurey-Schwartz 1972-1973, Espaces L^p et applications radonifiantes, Ecole Polytechnique, Paris (exp 7).

Department of Mathematics Vrije Universiteit Pleinlaan 2, F7 1050 Brussels, Belgium